RAPID COMMUNICATIONS

PHYSICAL REVIEW E

VOLUME 49, NUMBER 5

MAY 1994

Inversion problem for dense classical liquids: The binary case

Gerhard Kahl and Martin Kristufek
Institut fiir Theoretische Physik, Technische Universitat Wien, Wiedner Hauptstrafle 8-10, A-1040 Wien, Austria
(Received 21 June 1993; revised manuscript received 20 December 1993)

A few years ago Levesque, Weis, and Reatto (LWR) [D. Levesque, J.-J. Weis, and L. Reatto,
Phys. Rev. Lett. 54, 451 (1985)] proposed an iterative procedure for the solution of the “inver-
sion problem” of classical liquid state theory, i.e., the determination of an effective pair interaction
from the pair structure. We present the generalization of this method to the binary case using
in a first step computer simulation results instead of neutron-scattering data. We show that the
LWR approach which is based on the modified hypernetted-chain approximation and on computer
simulations also works successfully for two-component liquids even for rather high densities and
nonadditive potentials. In order to guarantee a good accuracy of the simulation results and hence a
satisfactory convergence of the procedure the number of particles of the minority component has to

be sufficiently large for dilute systems.
PACS number(s): 61.20.—p, 61.25.Bi, 61.25.Mv

Although the first attempts to solve the so-called “in-
version problem” of classical liquid state theory (by which
we understand the determination of the pair interaction
from the pair structure) date back to the 1960s and
were proposed by Johnson et al. [1], it is only about
ten years ago that one possible and satisfactory solution
for this problem has been proposed by Levesque, Weis,
and Reatto (LWR) [2, 3]. These authors have demon-
strated that their algorithm is very reliable even near the
triple point, i.e., in a region where the pair distribution
function (PDF) g(r) is known to be rather insensitive to
the detailed shape of the (effective) two-body interaction
v(r). In a subsequent paper, Levesque and Weis and
co-workers have applied their method to very accurate
neutron-scattering results for the pair structure of liquid
Ga [4]. Inversion schemes in the proper sense (i.e., with-
out the usage of adjustable parameters) proposed earlier
either fail in this region [5] or are not general enough to
be applied to any liquid [6]. Furthermore, Dzugutov et
al. [7] have used a different method to extract an effective
pair potential from neutron-scattering data, which, how-
ever, should rather be referred to as a fitting procedure:
they applied it to liquid Pb using a parametrized poten-
tial which is determined by fitting simulation results to
the experimental data. However, up to now, none of the
above mentioned methods has been generalized to the
binary case.

The idea of the LWR method originally stems from
an inversion scheme proposed by one of the authors to
a related problem in the Jastrow theory of Bose quan-
tum fluids [8]. The method is an iterative predictor-
corrector algorithm: it starts from the pair structure
[represented either by g(r) or the static structure fac-
tor S(g)] which may be given, either from a neutron-
scattering experiment, or—for testing reasons—from a
computer experiment with a known potential; then a se-
quence of interatomic potentials v*(r) is constructed as
follows: a trial pair interaction serves as a predictor; it is
constructed—due to the lack of exact theories for the de-
termination of the pair structure—by means of the mod-
ified hypernetted-chain (MHNC) relation [9], which is at
present one of the most reliable liquid state methods.
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The subsequent corrector step is performed by means of
a simulation which yields for this trial interaction the cor-
responding ezact PDF. From the difference between this
structure and the experimental structure an improved
guess for the potential is constructed. This procedure is
iterated until self-consistency between the trial and the
initial pair structures is achieved. Convergence of this
procedure turned out to be very fast [2, 3].

We present here the extension of an inversion proce-
dure to the binary case and demonstrate that the general-
ization of the LWR procedure is in principle possible and
that it yields reliable results also for two-component flu-
ids. However, due to the increased number of parameters
characterizing the binary system, the following problems
may be foreseen: (i) if the concentration of the minority
component is rather small, then the correlation functions
of this component might not be accurate enough if the
ensemble is not sufficiently large: statistical errors in the
determination of the PDF will cause errors in the pre-
dicted potential which may accumulate over the iteration
steps resulting in unrealistic and/or inaccurate results;
(ii) realistic potentials as those of binary metal alloys
sometimes show a rather pronounced degree of nonad-
ditivity; a good convergence of the inversion scheme for
highly nonadditive systems cannot be guaranteed a pri-
ort; (iii) finally, in the case of systems near the phase
boundary, it may not be excluded that the sequence of
potentials vfj(r) created during the procedure may “lead
into” or “pass through” the phase-separation region.

The principal aim of this contribution is to demon-
strate both accuracy and reliability of the procedure.
We achieve this by producing “experimental” data in a
computer experiment with a known interatomic poten-
tial and show that the proposed method is able to re-
produce this set of interactions with good accuracy. To
this end we proceeded as in the original papers [2, 3]: the
experimental results for the pair structure stem from a
computer experiment [molecular dynamics (MD)] for a
given potential v;**(r) = v{;(r) and will be denoted by
gf;-‘pt(r) = g?j (r) [Sf;‘pt(q) = S?j (9)]- The systems we
have chosen for this study are as follows.
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TABLE I. Potential parameter €;; and o;; (4,5 = 1,2) of the three LJ systems investigated (A,
B, and C). £ and « characterize the deviation of the potential parameters from the Lorentz-Berthelot
rule (cf. text). c; is the concentration of species 1. The masses of atoms 1 (2) are those of Ar (Xe),
i.e., 6.682 x 10728 kg (2.180x1072® kg), the mass density is for all systems 1874 kgm™>. N is the

number of particles in the MD simulation.

System | e €12 €32 | ¢ 011/022 012/022 [ a J[ c l N

A 0.4278 0.6278 0.8278 1.055 0.873 0.936 0 5/8 4000
B1 4000
B2 0.4278 0.6278 0.8278 1.055 0.873 0.936 0 1/10 6912
C 0.4278 0.7438 0.8278 1.250 0.873 0.880 —-0.06 2/5 4000

(i) Lennard-Jones (LJ) mixtures with the known pair
interaction
Jij 6
()] o

LJ potentials are characterized by the reduced energy
parameters €];, the distance parameters ;;, the concen-
trations c¢; of species i, and a mass density p,,. The
parameters of the LJ systems (denoted by A, B, and
C) investigated are compiled in Table I. It also contains
parameters { and a defined via e}, = £./e};€}, and
12 = %(011 +022)(1+4 a); they characterize the nonaddi-
tivity of a set of interactions v [= {v11(r), va2(r), v12()}],
i.e., the deviation from the Lorentz-Berthelot rules (§ =
1and a = 0).

(ii) A binary liquid metal alloy, which mimics Cs7oK30
at a temperature of 573 K and a mass density p,, = 1488

(7]

12
BT () = Bl (r) = ey | (22) -

vi5(7)

1 2 3 rfow

0 + L + 1
1 2 3 r/on
FIG. 1. Pair potentials v* (top) and PDFs g¥(r) (bot-
tom) for the nonadditive system C: comparison of the initial
functions (k=0, full line) with the converged results (after
k=12 iterations, dotted line); the broken line represent the
first estimate (k=1) for the potentials.

kgm~2 (for details cf. Ref. [10]). Potentials are given
henceforward in thermal units, omitting for simplicity
the usual asterisk.

Systems A, B1, and B2 are more or less additive mix-
tures; note that in system B the concentration of the mi-
nority component (species 1) is only 0.1. System C shows
a rather strong nonadditivity, both with respect to the
position and the depth of the minimum. The simulation
of the corrector step of the procedure is a standard micro-
canonical MD simulation. We have considered in general
4000 particles; for system B2 additional calculations have
been performed for a 6912-particle ensemble. The runs
have been split up into two (A, B1, and C) or five (B2)
independent runs, extending, on the whole, over 20 000
integration steps At (= 5x1071° s); an energy conserva-
tion smaller than 0.1% over the entire run was required.
The PDFs g;;(r) were determined in intervals of 20 At.
Both the PDF's and the potentials vf;(r) were truncated

vy;(7)

1 2 3 rfoy

1 2 3 r/oxn
FIG. 2. Pair potentials v* (top) and PDFs g%(r) (bot-
tom) for the (smaller) dilute system B1 (4000 particles): com-
parison of the initial functions (k=0, full line) with the results
after k=12 iterations (dotted line).
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at ro (LJ: 7 = 4032, liquid metals: 7. = 18 A), “contin-
uing” the PDFs beyond the cutoff radius via the usual
Verlet prescription [11]

gii(r) =gf™(r) , T <rc

cij(r) = —vi5(r) ,

(2)

> T

The c;j(r) are the direct correlation functions, their
Fourier transforms é;;(g) are related via the well-known
expressions with the partial structure factors Sj;(g).
Such an extension in 7 space is necessary to guarantee a
sufficient accuracy of the Fourier transforms [from g;;(r)
to S;;j(g)] and the determination of the c;;(r), which will
be required in the recursive expression (see below).

The inversion scheme itself is based on the following
formally exact relation:

9ij(r) = exp[—vi;(r) + 1+ gij(r) — cij(r) + Bij(r; V)]
(3)

The bridge functions B;;(r; v)—being far too compli-
cated to be calculated—are replaced in the MHNC [9]
by the bridge functions of a suitably chosen binary addi-
tive hard-sphere system [where they can be determined
analytically within the Percus-Yevick (PY) approxima-
tion [12]]; this approach is justified by the “universality
hypothesis” of Rosenfeld and Ashcroft [9].

()

1 2 3 1/

0 1 ' 1 ' Il

1 2 3 r/ay
FIG. 3. Pair-potentials v* (top) and PDFs gf;(r) (bot-
tom) for the (larger) dilute system B2 (6912 particles): com-
parison of the initial functions (k=0, full line) with the con-
verged results (after k=12 iterations, dotted line); the broken
line (which coincides practically with the dotted line) marks
the average over iterations 8 to 12 of the inversion procedure.
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The iterative scheme starts from a set of trial poten-

tials v! which represents a first guess. The quality of this

guess will of course have influence on the speed of conver-
gence of the procedure. To investigate this influence we
have constructed v! from the g;;(r) via the PY relation
(system A) or a generalized MHNC approximation using
the Lado criterion [13] (systems B1, B2, and C). What
now follows, i.e., the argumentation of how to construct
the v*, is similar to the one-component case: a simula-
tion for v! yields a set of PDFs g};(r), which—since v’
is only a predictor for vO—will of course differ from the

95 P!(r). Using the exact relation

vilj(r) =1+ gilj (r) - c}j(r) + B;j(r;v!) — ln[g}j(r)]

(4)

v,-j(r)

T

5 10 15 r [4]

FIG. 4. Pair potentials v* for the Cs70Kso alloy as la-
beled: (k=0)—full line, first guess; (k=1)—broken line; and
converged result (k=8)—dotted line. (a) Region of the main
minimum; (b) Friedel oscillations.
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we can assume that the set of B;;(r; v!) represent rather
good first approximations for the unknown B;;(r;v) in
(3). Hence, replacing the B;j(r;v) in the exact relation
(3) by their first estimates B;;(r; v!) yields an improved
estimate v?2 for the interaction v°, which we want to ex-
tract in this approach. Iterating this procedure, we ob-
tain the recursive relation

ol (r) + Inlgh 7} (1) /g5PH () + ek ()

—cP(r) — gl (r) + 957 (r), (5)
which is formally identical—except for the indices—with
the expression of the one-component case. The cfj (r) are

obtained from the simulation PDFs g¥(r) as mentioned
above.

Our results may be summarized as follows: for systems
A and C (with rather large minority concentrations) a
fast convergence could be observed; after 12 iterations,
a satisfactory agreement between the initial potentials
v® and v!? was found. Figure 1 shows the results for
the potentials and the corresponding PDF's for system C
(data for system A are of the same accuracy and are not
displayed here). However, we found that an ensemble
size of 4000 particles for the simulation step is absolutely
necessary for a sufficiently high numerical accuracy. The
situation is somewhat different for the dilute system B:
a satisfactory convergence of the algorithm could only
be obtained for the larger system B2 (6912 particles).
For B1 (4000 particles), the statistical errors especially
in g% (r) caused artificial wiggles in the pair interaction
v¥}1(r) of the subsequent iteration step; these artifacts
accumulated in every iteration step so that after 12 it-
erations the results were by no means acceptable (see
Fig. 2), while for system B2 a satisfactory convergence
was obtained after 12 steps. Results for system B2 are
displayed in Fig. 3: the statistical errors inherent to the
simulation still cause small wiggles, which, however, have
only minor influence on the resulting PDFs. We want to
point out that no smoothing procedure whatsoever has
been applied to the simulation data. A slight improve-
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ment of the results may again be obtained by averaging
over several sets of potentials v* as proposed by LWR [2].

We estimate that ~ 700 particles of the minority com-
ponent are sufficient to guarantee a good accuracy and
hence a satisfactory convergence of the algorithm; this
is in agreement with LWR’s results [2, 3] for the one-
component case. The price for this accuracy requirement
is, however, high: one simulation step for system B2 re-
quired a considerable amount of computing time even
on a vector computer. Unfortunately, to the best of our
knowledge, no experimental data for the full pair struc-
ture of binary rare gases (as a testing case for a binary
LJ system) are available.

In Fig. 4 we display the results of the Cs-K alloy.
Even though here the potentials are—measured in ther-
mal units—stronger than in the LJ case, we obtain sat-
isfactory convergence already after eight iteration steps,
which proves the LWR scheme to be applicable to bi-
nary liquid metals, too. Note that also the characteristic
Friedel oscillations are reproduced very accurately.

Concluding, we may say that the iterative inversion
procedure proposed by LWR may be successfully gener-
alized to binary systems (both in LJ and liquid metal
systems): it works even for higher densities and for non-
additive interaction potentials. It is, however, much more
“expensive” (regarding computer time) than in the one-
component case, if we require the same degree of numeri-
cal accuracy. The only serious numerical problems occur
for dilute systems: to guarantee a good accuracy at least
~ 700 particles of the minority component are required.
Hence, for extremely dilute systems (concentrations less
than ~ 0.05) the reliability of new numerical algorithms
(as careful smoothing of the simulation data) has to be
tested. These results along with more numerical details
are planned to be published elsewhere.
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